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Abstract 
A new primal simplex type algorithm for the Minimum Cost Network 
Flow Problem (MCNFP) is presented. The proposed algorithm belongs 
to a special �exterior simplex type� category. Contrary to the network 
primal simplex algorithm, the new algorithm computes two flows. One 
flow is basic but not always feasible and the other is feasible but not 
basic. The pseudo code and analytical description of the pivot procedure 
is given. Furthermore, the necessary steps are analytically shown 
through an illustrative example. 
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1. INTRODUCTION 

Network Optimization is a large part of Combinatorial Optimization. The 
Minimum Cost Network Flow Problem, (henceforth the abbreviation MCNFP will be 
used) constitutes a wide category of problems; perhaps the most important of the research 
area of Network Optimization. There exists a plethora of every-day applications, in
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Informatics, Constructions, Telecommunications sector etc, which can be mathematically 
formulated using the MCNFP. Many of them can be found in [1] and [2]. Furthermore, 
other well known problems like for example the shortest path problem, the assignment 
problem and others, are special cases of the MCNFP. 

The proposed new algorithm belongs to a special �exterior simplex type� category 
and it is of the same type as the one described in [3]. Instead of the long expression 
�Network Exterior Point Simplex Algorithm for the MCNFP�, the discussed algorithm 
will be referred with the acronym �NEPSA�. Contrary to the Network Primal Simplex 
algorithm, NEPSA computes two flows. One flow is basic but not always feasible and the 
other is feasible but not always basic. Previous computational results on the general linear 
problem have shown, through a computational study, that this type of algorithms is more 
efficient than the classical Revised Primal Simplex algorithm in CPU time. This 
computational improvement is probably due to the essential reduction on the number of 
iterations. It is believed, that these encouraging results could be also applied to the 
MCNFP. 

To this date, there are no specializations of exterior type simplex algorithms for 
the minimum cost flow problem. There have been implementations of exterior type 
simplex algorithms exists only for the assignment problem, see [4]. In this paper, we 
present the first exterior type network simplex algorithm for the minimum cost flow 
problem. The proofs of lemmas and theorems were omitted, for the sole reason that this 
paper doesn�t grow too much in size. 

In Section 2, some notations and definitions are given. In Section 3 we describe 
NEPSA in a general form. A demonstration of NEPSA is given in Section 4 with an 
illustrative example. Finally, in Section 5, conclusions are made and we also discuss 
some possible future work. 

 

2. NOTATIONS AND DEFINITIONS 

Let G = (N, A) be a directed network with n nodes and m arcs. Each arc (i, j) A 
has a cost cij which denotes the unit shipping cost along arc (i,j). In this paper, NEPSA 
algorithm is applied in the un-capacitated MCNFP. This way each arc has a lower bound 
on the flow capacity lij = 0, and upper bound ui j = + . Associated with each arc (i,j) is 
also an amount xij of flow on the arc (contrary to the network primal simplex algorithm xij 
might become negative). We associate with each node i   N a number bi which indicates 
its available amount of supply or demand. Node i will be called a source, sink or 
transshipment node, depending upon whether (bi 0), where   denotes the type of 

constraint >, < or = respectively. We make the assumption that 
1
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( ) 0,
n

i

b i




 (total supply 

equals total demand) and G will be called as a balanced network. Now, the minimum cost 
flow problem can be stated as follows: 
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A vector of dual variables for the network G is a vector w with n components. For each 
vector w, the reduced costs sij of each non basic arc, are defined as sij = cij � wi + wj. 
Network Simplex type algorithms compute basic solutions x and (w,s) which are 
complemental.  

Furthermore, in this paper, notations such as paths, directed paths, cycles, directed 
cycles and trees, are defined as in [5]. The basic solution for the MCNFP can be 
represented using a tree. Each tree of a MCNFP consists of a flow vector x, which is the 
unique solution of the above equations constraints. The basic flow of the tree T, will be 
denoted as x(T). We say that the flow of the tree is feasible, if 0ijx  ,   arc ( , )i j T . 

Each tree, which has a nonnegative flow, will be called a feasible tree. Equivalent, each 
tree which has a negative flow, will be called a non feasible tree, 

Contrary to the Network Primal Simplex algorithm, NEPSA first selects a leaving 
arc and afterwards selects an entering arc. For simplicity reasons, from now on the 
leaving arc will be denoted with (k,l) while the entering arc with (g,h). We also denote C 

(k) the cycle that would have been created at the k-th iteration, if prior to the leaving arc, 
the entering arc have joined the basic tree T. More generally, for any variable ø, ø(k) will 
denote the value of the ø variable at the k-th iteration. If two arcs, for example (i,j) and 
(g,h) have the same orientation in C(k), then this fact will be symbolized as 

( , )  ( , )i j g h . If, on the other hand, arcs (i,j) and (g,h) have the opposite orientation 

in C(k), then this fact will be symbolized as ( , )  ( , )i j g h . 

At Step 0, an initial feasible tree is constructed using the well known big M 
method. The set of arcs is partitioned in two sets. The first set corresponds to the basis 
tree and will be denoted henceforth as T. The second set corresponding to the non basic 
arcs will be further partitioned in the following two sets P and Q: 

{( , )}, ( , ) : 0

{( , )}, ( , ) : 0
ij

ij
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This way, the initial set of arcs A is finally partitioned as [   Q]A T P . 
Vector hgh denotes the representation of each non basic arc, for example (g,h), in 

terms of the basic arcs (i,j). Each non basic arc (g,h) corresponds to a column hgh.  Each 
element of this column corresponds to a basic arc. The elements of hgh are calculated 
using the following rules. For detailed description of these calculations see [6]. 
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Vector d denotes a �complemental� flow which assists the algorithm to compute 
the second feasible but not always basic flow. Accordingly, vector d is partitioned as 

 ( ), ( ), ( )d d T d P d Q . The elements of d are computed using the following relations. 

         (2.2) 
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Elements of vector 1 2 | |( , ,..., )P     can have any value, so long as vector d is 

appropriate to compute the second feasible but not always basic flow. In our 
implementation, vector ë is initialized using (1,1,...,1)  . 

If P  , then the problem is optimal and the algorithm terminates. At Step 1 the 
optimality condition, whether it holds P    or not, is examined. If the previous relation 
holds, then the algorithm stops; an optimal solution has been found. Otherwise, the 
algorithm continues. In this case, if ( , ) : 0iji j T d   , then the algorithm proceeds to 

the next step, otherwise the problem is unbounded and therefore negative cost cycles have 
been identified. At Step 2, the selection of the leaving arc is made using the following 
minimum ratio test: 

 
             (2.3) 
 
 

Afterwards, the second flow y is calculated using the relation y x ad  . This 
second flow remains feasible, but not always basic, since y corresponds to network and 
not to tree. At Step 2, the selection of entering arc is being done using the following 
minimum ratio tests: 

                               (2.4) 
                                          (2.5) 
 
 

If 1 2  , then the pivot will be called �Type A iteration�. In this case the 

entering arc will be (g,h) = (p1,p2) and 1 2~ ( , )P P p p ; otherwise, the pivot will be 

called �Type B iteration�. In the latter case the entering arc will be (g,h) = (q1,q2) and 

1 2~ ( , )Q Q q q .Using the new partition (T P Q), where ~ ( , ) ( , )T T k l g h  the 

vectors xi j, sij, hi j and dij are updated.   
There are two choices for the implementation of the d vector. The first choice is 

to compute the feasible flow y at each iteration and to update d using d(k+1) = y(k) � x(k+1), 

 k-th iteration; if ( , )g h P , ( 1) ( 1) 1k k
gh ghd d   . The implementation based on the 

second choice, doesn�t calculate the feasible flow y at each iteration. Contrary to the 
previous update method, only the d(T) subset is computed. At each iteration, the d(T) is 
updated using the same method as the columns hi j (from the network simplex tableau). It 
can be proved that the elements of the d(T) vector using the first method, are equal to the 
elements of the d(T) vector, using the latter method, multiplied by a constant number       
ö = a(1) * a(2) * �. * a(i). This difference in the values of dij(T) between the two methods 
doesn�t affect the comparison of the ratios. Therefore, it is much more preferable to 
implement the NEPSA algorithm in H/Y using the latter method, since it demands less 
data to be kept and accessed at each iteration. This method also will be used in the 
example of Section 3. 
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3. ALGORITHM DESCRIPTION 
The presentation of NEPSA in this paper relies on the two following assumptions. 

Assumption 1, (Non - degeneracy assumption). 
It is assumed that every basic feasible solution is non-degenerate; that is firstly xi j  0 
 (i,j)T and secondly si j  0,  (i,j) T. 
Assumption 2, (Optimality assumption) 
Moreover, we will assume that there exists an optimal solution for all the problems, 
which NEPSA algorithm is applied to. 
The formal description of NEPSA is as follows: 
Algorithm Network Exterior Point Simplex Algorithm for the MCNFP. 

  1  Step 0 (Initializations) 

  2  Construct a feasible tree T (Big M method) 

  3  Compute x(T), w, s 

  4  Find the sets P and Q 

  5  Compute d, using relation (2.2) 

  6  Step 1 (Test of Optimality) 

  7  do while ( P   ) 

  8        if ( ( ) 0d T  ) then 

  9             EXIT (The problem is unbounded) 

10        else 

11              Step 2 (Selection of leaving arc) 

12              Compute a, using relation (2.3) 

13              Choose the leaving arc (k,l) 

14              Compute feasible flow y 

15              Step 3 (Selection of entering arc) 

16              Compute è1, è2, using relations (2.4) and (2.5) 

17              Choose the entering arc (g,h) 

18              Step 4 (Pivoting) 

19              Update T, P, Q, x, s, d. 

20        end if 

21  end do 

22  EXIT (The problem is optimal) 

Table 2.1. Algorithm�s pseudo � code 



The correctness of the proposed algorithm relies on the following theorems. 
However, the proofs of correctness of these theorems are omitted in this paper. 

Theorem 1 If the problem is not degenerate, then the value of the objective function is 
decreased, from iteration to iteration. 

Theorem 2 If the problem is not degenerate, then the algorithm will perform a finite 
number of iterations. 

Lemma 1 If it holds that d(T) = 0, then the arcs belonging to the P set form a directed 
cycle. 

Theorem 3 If it holds that d(T)   0 and P   , then the problem is unbounded. 

Theorem 4 At each iteration (either pivot type A or B), it holds that 
( , ) : 0 and ( , ) : 0ij iji j P s i j Q s      . 

Theorem 5 If ( , ) : 0 0 : max ij
ij ij
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
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  
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Theorem 6 The basic flow y remains always feasible. 

Theorem 7 If P   , then the basis tree T is optimal. 

 
4. AN ILLUSTRATIVE EXAMPLE 

In this section a demonstration of the two different pivot types will be presented, 
using two iterations of the following minimum cost network flow problem. The network 
which represents the discussed MCNFP is shown in figure 2.1a. At step 0, the big M 
method is applied to the initial network. After the insertion of the artificial node and the 
corresponding arcs, the modified network is shown in Figure 2.1b.  

 
Figure 2.1: The initial network (a) and the augmented network (b) 



At step 0, NEPSA algorithm starts with the initial feasible tree, which is depicted 
in blue color in Figure 2.1b. The basic flow vector is: 

(1) (1) (1) (1) (1) (1)
15 25 53 54( , , , ) (2,5,3, 4)x x x x x x   . 

The dual variables vector is: 
(1) (1) (1) (1) (1) (1) (1)

1 2 3 4 5( , , , , ) (127,127, 127, 127,0)w w w w w w w      

and the reduced costs vector is: 
(1) (1) (1) (1) (1) (1) (1) (1) (1)

13 23 24 12 32 34 41( , , , , , ) ( 258, 249, 248,3, 252,2, 259)s s s s s s s s s      . 

Therefore,  (1) (1,3), (2,3), (2,4)P   and  (1) (1,2), (3,2), (3, 4), (4,1)Q  . The total 

cost corresponding to the basic flow vector x(1), is
(1)

(1) (1) (1)

( , )

1778ij ij
i j T

z c x z


   . 

1st Iteration 

At step 1, it holds that (1)P   , therefore the algorithm doesn�t terminate. 

Since,    (1) (1) (1) (1) (1) (1)
15 25 53 54( ) , , , 1, 2, 2, 1d T d d d d d       , NEPSA proceeds to  

step 2. The minimum ratio test is a(1) = 1,5 and arc (5,3) exits T(1). The leaving arc is 
highlighted in Figure 2.2a using red intersecting lines. 

 At step 2, the ratios (1)
1  and (1)

2  are 249 and 2 respectively, so it holds that 
(1) (1)

1 2  and arc (3,4) will enter the tree T(1). Accordingly, this is a type B iteration. At 

the 2nd iteration, the basic flow vector shall not be feasible. This fact in terms of Linear 
Programming is equivalent to following an exterior path; outside the feasible region. The 
entering arc is highlighted in Figure 2.2a using green color. At step 4, the new basis tree 
T(2) is presented in Figure 2.2b. 

            

Figure 2.2: The leaving & entering arc (a) and the updated basis tree t(2) (b). 



The updated basic flow vector is now: 
(2) (2) (2) (2) (2) (2)

15 25 34 54( , , , ) (2,5, 3,7)x x x x x x     

 and the updated reduced costs vector is: 
(2) (2) (2) (2) (2) (2) (2) (2)

13 23 24 12 32 41( , , , , , ) ( 256, 247, 248,3, 250,259)s s s s s s s s      . 

Therefore,  (2) (1,3), (2,3), (2,4)P  and  (2) (1, 2), (3, 2), (4,1)Q  , (arc (5,3) was 

artificial, so it is discarded from any future computations). The total cost corresponding to 

the basic flow vector x(2), is (2) (2) (2)

( , )

1772ij ij
i j T

z c x z


   . 

2nd Iteration 

At step 1, it holds that (2)P  , therefore the algorithm doesn�t terminate. 

Since,    (2) (2) (2) (2) (2) (2)
15 25 34 54( ) , , , 1, 2,2, 3d T d d d d d      , NEPSA proceeds to 

step 2. The minimum ratio test is a(2) = 2 and arc (1,5) exits T(2). The leaving arc is 
highlighted in Figure 2.3a using red intersecting lines. 

At step 2, the ratios (2)
1  and (2)

2  are 256 and 259 respectively, so it holds that 
(2) (2)

1 2  and arc (1,3) will join the basis tree T(2). Accordingly, this is a type A iteration. 

The entering arc is highlighted in Figure 2.3a using green color. At step 4, the new basis 
tree T(3) is presented in Figure 2.3b. 

 
Figure 2.3: The leaving & entering arc (a) and the updated basis tree t(3) (b) 

This was a graphical depiction of the two characteristic pivot types of NEPSA. 
The example will be stopped here and not be further solved, because the rest 
computations are easy to be carried out. 



 One of the main features of the proposed new algorithm, which diversifies it from 
the classical Network Primal Simplex is the selection of the leaving and entering arcs. 
The latter algorithm would always choose as entering and leaving arcs, two arcs which 
have the opposite orientation inside the C(k). On the contrary, NEPSA algorithm in type B 
pivots, choose as leaving and entering arcs, a couple of arcs having the same orientation 
inside the C(1), (see Figure 2.2a at the 1st iteration). 
 
5. CONCLUSIONS AND FUTURE WORK 

There have been developed many efficient data structures. Some of them are the 
dynamic trees as described in [7], Fibonacci heaps as described in [8] or other class of 
data structures using depth, parent, and preorder lists as described in [9]. Therefore, it is 
much interesting to use such data structures, (in Fortran Programming Language) in the 
NEPSA algorithm. 

If certain improvements will be made, regarding the data structures used and 
better programming techniques, then it is possible to test NEPSA algorithm against some 
of the state-of-the-art implementations, like for example RELAX-IV [10], NETFLO [11] 
or RNET [12]. However, it would require first to develop appropriate anti-cycling rules, 
see [13] and examine the behavior of NEPSA to certain well known pathological 
instances (at least for the classical Network Primal Simplex algorithm), see [14] and [15]. 
Moreover, NEPSA algorithm will be incorporated in the Network Optimization suite 
NetPro, see [16]. This way, NetPro will expand its capabilities with new algorithms for 
the MCNFP. 
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